凤凰棋牌游戏大厅

">凤凰棋牌_凤凰棋牌手机官网_凤凰棋牌游戏大厅

您现在的位置:主页 > 专升本辅导 > 高等数学辅导 >  > 正文

人类第一次将33写成了3个整数的立方和

2019-10-10 21:36http://www.baidu.com四川成人高考网

  公元2019年3月的一天,一位叫Tim Browning(与Timothy Browning是同一人)的数学家在其个★△◁◁▽▼人主页上更新了一个网页,网页上的内容非常简单,没有任何多余的东西:

  上面的算式是将自然数33用整数的立方和表示了出来。但是,可能出乎你预料的是,这是人类第一次知道,世间还存在着这样一个等式,第一次——我们第一次把33用这种方式写了出来!

  我们知道我们茅草堆垒出来能建造茅屋、砖石堆垒起▲●…△来能建造砖房、钢筋混凝土堆垒起来能建造高楼大厦。

  现在许多高楼大厦都是钢筋混凝土建筑的,但是是不是所有的高楼大厦都可以由钢筋混凝土来建筑呢?

  这其实就是“堆垒数论”的思想。我们用简单的语言表达这个堆垒数论考虑的问题,如果考虑A、B两个整数的子集。如果A中的数都能被B中的某几个数相加得到,我们就说A能被B堆垒出来。大多时候,我们还要限制使用B中数字个数的数量。这时候,所使用的B中的数叫做堆垒项。

  如果A是所有不小于6的偶数集合,B是素数集合,并限制只能用2个B中的数。那么问题就是著名的哥德巴赫猜想。

  如果A是自然数集合,B所有完全平方▽•●◆数集合,并限制只能用▪•★2个B中的数。自然数的能不能写成两个数平方和问题。

  如果A是自然数集合,B所有完全平方数集★-●=•▽合,并限制只能用3个B中的数。自然数能不能写成三个数平方和问题。

  有时候,我们还可以反过来研究,比如,如果所有自然数都能被B中的数加出来,那么多少个数之内一定能办到?

  以上方程中的所有未知数地位是一样的,我们把那种通过交换顺序能变得一样的解看成相同的解可以得到:

  关于第四个方程有一则小故事,根据迪克逊的《数论史》(History of t★◇▽▼•he Theory of Numbers)记载。1867年,史密斯(H. J. S. Smith)开始推广表为5个,7个平方数的结果。一位不为人知的委员会成员曾向巴黎科学院建议举办1882年的数学科学大奖(grand prix des science mathématiques)赛题目为“表为5个平方数的方法数”。实际上1881年春天就发布了公告悬赏这个问题,后来才将其作为赛题。史密斯和闵可夫斯基(H. Minkowski)(值得注意的是,闵可夫斯基当时才18岁)都获得了该大赛的全额奖金。他们俩都发展了n元二次型理论来求出表为5个平方数的方法数。

  上面第一个方程为费马双平方和定理(Fermats two-square theorem)的一个特例。费马还是“一如既往地”只写命题不给证明,这个命○▲-•■□题也一样。这个命题最早被欧拉证明的。费马的这一命题即给出了所有4n+1型的素数都可以唯一地分解为两个平方数之和(至于如何求其唯一表示可以参看西尔弗曼的《数论概论》第26章)。那么其他数呢?

  一个大于1的整数可以写成两个平方整数之和,当且仅当的它的标准素数分解中不包含4n+3型素数或者4n+3型素数是偶次。

  比如637 = 7²·13有两个素因子7与13,而是4n+1型,而7模4n+3,但素数7的次数为偶数2,故637 可以表示为两个平方数之和。实际上,637 = 14²+21²。

  整数可以写成三个整数的平方和(即允许堆垒项为零),当且仅当的它不为4^a(8b+7)型的数。(其中,4^a表示4的a次方,a与b都取自然数)

  值得注意的是这里用的是“三个整数的平方和”与双平方和情形的描述有所不同。

  整数可以写成少于四个平方数之和(默认平方数从1开始),当且仅当的它不为4^a(8b+7)型的数。(其中,4^a表示4的a次方,a与b都取自然数)

  我们不应该去纠结于当需要表示的数比较小时(比如取5、6,堆垒项总有零出现),四个整数中会出现零。我们应该看到当需要表示的数为很大很大的整数时,都可以由四个平方数来表示,就像再厉害的野马(大整数)都可以被这位驯马师(拉格朗日四平方和定理)驯服,这便就是此定理的重要意义。

  1770年,英国当时的领袖数学家华林(Waring)(别因为音译名将其当作华人)在其《代数沉思录》(Meditationes Algebraicae)第二版中提到一句话:

  每一个正整数可以写成4个整数的平方和(即允许堆垒项为零);可以写成9个正整数的立方和,可以写成19个整数的四次方和,如此等等。

  当然这句话的一部分就是拉格朗日的定理,第二部分是华林▲★-●通过大量数值试验得出的猜想,第三部分也是他得出的猜想。

  对于每一个给定的正整数k,存在一个最小的正整数g(k),使得每一个自然数都可以写成不超过g(k)个整数的k次方和。

  其中求g(k)的问题便是华林问题。经过上面关于平方数的介绍,我们知道了g(2) = 4。

  1909年,德国数学家韦伊费列治(Wieferich)证明了g(3) = 9;后发现漏洞,于1912年由生于英国的美国数学家肯普纳(Kempner)补正;

  好了,回到我们最初的问题:自然数的整数立方和表示。在k=3时的华林◁☆●•○△问题中,我们知道每一个正整数都可以为不超过9个▪▲□◁正整数的立方和;

  如果将前面华林问题的堆垒项只允许用加法的条件放开,我们允许用减法,是什么情况呢?——这个问题其实就是简易华林问题——不要因为其命名为“简易华林问题”就觉得其比“华林问题”简单。

  而将正整数表示成三个整数立方和的问题,就是堆垒项限制为3的简易问题。现在这个问题依然是没有解决的问题。

  我们用v(k)表示满足相应条件最小的正整数,即对应于华林问题中的g(k).

  接着赖特(E. M. Wright)于1934年得到一个粗糙的估计:(此估计不等式的证明可以参看陈景润写的《初等数论Ⅲ》132页的内容)

  1936年,莫德尔(Mordell)证明了除极少一部分数不能确定外,大部分整都适合v(3) = 4.

  我国数学家柯召曾列出一张表,将100以内的数分解为4个立方数之和,表中几乎每一个数均可分解为x³+y³+2z³的形式,仅有两个例外

  柯召教授这样做的目的或许是为了说明v(3)=4是正确的,但是这仅仅只能作为一些数值试验。

  2003年,科学出版社出版了中文版的《数论中未解决的问题(第二版)》。其作者是为盖伊(1916年9月30日~)现在已经102岁高龄了。

  在《数论中未解决的问题(第二版)》的第D章(该书编写了A~F章节)的D5问题中,提到除了形如9n±4数尚且不知道结论,对于所有其他的数都证明了是4个整数的立方和。

  了解同余的小伙伴们,可以做下计算,任何整数的立方在mod 9 的情况下只有-1,0,1三种可能。所以 x³ + y³ + z³ 在mod 9 的情况下,只有0,±1,±2,±3这7种可能,而±4是不可能的。

  所以形如9n±4数一定不能表示为三个整数的立方和。由此△▪▲◇•■★▼□△我们也可以知道v(3)3,也就是说所有自然数不能仅由三个整数的立方和表示。但是退而求其次,哪些数可以由三个立方数表示呢?数学家们希望有像“费马双平方和定理”、“勒让德三平方和定理”这样的定理来引导人们,但是目前为止还没有。

  所有不为9n±4型的数都是三个整数的立方•●和吗?盖伊书中写道:1992年,他对所有小于1000的数用计算机搜索后发现,除了下面(标红部分截止2019年3月都还没有被解决)表中的数以外,对于其▲=○▼他小于1000的数都找到了这样的表示。

  最近,由Booker Andrew提交了一篇论文Cracking the problem with 33,论文中找到33这个文章开头的结果,由Browning公之于众。我们可以看到每个元素都是10的16次方的数量级,要读出来应该快读到亿亿位了!

  也就是说到目前为止,100以◇…=▲内的自然数就剩下42还没有找到关于立方和的整数解了!

凤凰棋牌游戏大厅